Studying the influence of inclusion characteristics on the characteristic length involved in quasi-brittle materials using the lattice element method
نویسندگان
چکیده
Unlike nonlocal models, there is no need to introduce an internal length in the constitutive law for lattice model at the mesoscopic scale. Actually, the internal length is not explicitly introduced but rather governed by the mesostructure characteristics themselves. The influence of the mesostructure on the width of the fracture process zone which is assumed to be correlated to the characteristic length of the homogenized quasi-brittle material is studied. The influence of the ligament size (a structural parameter) is also investigated. This analysis provides recommendations/warnings when extracting an internal length required for nonlocal damage models from the material mesostructure.
منابع مشابه
Meso-scale Modeling of Tension Analysis of Pure and Intra-ply Hybrid Woven Composites Using Finite Element Method
One of the key issues associated with using of composites in various applications is their tensile behavior. The tensile behavior of a composite material is strongly influenced by the properties of its constituents and their distribution. This paper focuses on gaining some insights into the tensile process of pure and hybrid woven composite reinforced with brittle and ductile yarns. For this pu...
متن کاملInfluence of an Inclusion on Multi-Pass Copper Shaped-Wire Drawing by 2D Finite Element Analysis
The size and length effects of an inclusion on multi-pass copper shaped-wire drawing were investigated. For this purpose, an experimental investigation on optimal die half-angle was conducted. Based on experimental data of optimal die half-angle, wire and inclusion deformations, drawing and hydrostatic stress of copper shaped-wires that contain an inclusion were calculated by two-dimensional fi...
متن کاملNumerical assessment of influence of confining stress on Kaiser effect using distinct element method
Nowadays acoustic emission (AE) testing based on the Kaiser Effect (KE) is increasingly used to estimate the in-situ stress in laboratories. In this work, this effect is assessed on cylindrical specimens in numerical simulations of the cyclic loadings including loading, unloading, and re-loading cycles using a 3D code called the particle flow code (PFC) based upon the distinct element method. T...
متن کاملMeasurement of Variation in Fracture Strength and Calculation of Stress Concentration Factor in Composite Laminates with Circular Hole
In this research, residual strength and stress concentration factor of laminated composites with a circular open hole are studied analytically, numerically and experimentally. The numerical study was carried out using the finite element method. Moreover an analytical study was carried out with developing of point stress criterion. Mechanical testing was performed to determine the un-notched ten...
متن کاملCracking Elements Method for Simulating Complex Crack Growth
The cracking elements method (CEM) is a novel numerical approach for simulating fracture of quasi-brittle materials. This method is built in the framework of conventional finite element method (FEM) based on standard Galerkin approximation, which models the cracks with disconnected cracking segments. The orientation of propagating cracks is determined by local criteria and no explicit or implic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1611.06396 شماره
صفحات -
تاریخ انتشار 2016